Vertices: | 14 (14[6]) |
Faces: | 28 (14 equilateral triangles + 14 obtuse triangles) |
Edges: | 42 (28 short + 7 medium + 7 long) |
Symmetry: | 7-fold Dihedral (D7) |
Dihedral Angle 1 (7): | acos(root[29*(x^3)−5*(x^2)−29*x+13]) = acos((44*cos(π/7)−20*cos(2*π/7)−9)/29) | ≈51.196644381 degrees |
Dihedral Angle 2 (14): | acos(sqrt(root[783*(x^3)+27*(x^2)−915*x+169])) = acos(sqrt((136*cos(π/7)−104*cos(2*π/7)−41)/87)) | ≈64.024996468 degrees |
Dihedral Angle 3 (14): | acos(-root[27*(x^3)+9*(x^2)−27*x−1]) = acos(−(4*cos(π/7)−1)/3) | ≈150.222262672 degrees |
Dihedral Angle 4 (7): | acos(root[29*(x^3)+7*(x^2)−21*x−7]) = acos((1+8*cos(π/7)+28*cos(2*π/7))/29) | ≈332.2534962499 degrees |
(values below based on short edge length = 1) |
Short Edge (28): | 1 |
Medium Edge (7): | sqrt(root[(x^3)−4*(x^2)+3*x+1]) = sqrt(1+2*cos(π/7)) | ≈1.67389896224498515951 |
Long Edge (7): | root[(x^3)−2*(x^2)−x+1] = 1/(2*sin(π/14)) | ≈2.2469796037174670611 |
Volume: | sqrt(root[2985984*(x^3)−4064256*(x^2) −3803184*x+117649]) = 7*sqrt(cos(π/7)+1/(8*sin(π/14)))/6 | ≈1.4109982151413774978 |