Regular Triangular Toroidal Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Anti-Heptagonal Iris Toroid
Vertices:  14  (14[6])
Faces:28  (14 equilateral triangles + 14 obtuse triangles)
Edges:42  (28 short + 7 medium + 7 long)
Symmetry:  7-fold Dihedral  (D7)
Dihedral Angle 1 (7):  acos(root[29*(x^3)−5*(x^2)−29*x+13])    
    = acos((44*cos(π/7)−20*cos(2*π/7)−9)/29)    
≈51.196644381 degrees
Dihedral Angle 2 (14):  acos(sqrt(root[783*(x^3)+27*(x^2)−915*x+169]))    
    = acos(sqrt((136*cos(π/7)−104*cos(2*π/7)−41)/87))    
≈64.024996468 degrees
Dihedral Angle 3 (14):  acos(-root[27*(x^3)+9*(x^2)−27*x−1])    
    = acos(−(4*cos(π/7)−1)/3)    
≈150.222262672 degrees
Dihedral Angle 4 (7):  acos(root[29*(x^3)+7*(x^2)−21*x−7])    
    = acos((1+8*cos(π/7)+28*cos(2*π/7))/29)    
≈332.2534962499 degrees
(values below based on short edge length = 1)
Short Edge (28):  1
Medium Edge (7):  sqrt(root[(x^3)−4*(x^2)+3*x+1])    
    = sqrt(1+2*cos(π/7))    
≈1.67389896224498515951
Long Edge (7):  root[(x^3)−2*(x^2)−x+1]    
    = 1/(2*sin(π/14))    
≈2.2469796037174670611
Volume:sqrt(root[2985984*(x^3)−4064256*(x^2)    
    −3803184*x+117649])    
    = 7*sqrt(cos(π/7)+1/(8*sin(π/14)))/6    
≈1.4109982151413774978