Other Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Canonical Joined Truncated Icosahedron
Vertices:  92  (60[3] + 12[5] + 20[6])
Faces:90  (60 kites + 30 rhombi)
Edges:180  (60 short + 120 long)
Symmetry:  Full Icosahedral  (Ih)
Rhombus-Kite Angle:  acos(−sqrt(root[8th-order polynomial]))    ≈159.617689297 degrees
Kite-Kite Angle:  acos(root[8th-order polynomial])    ≈160.391633417 degrees
The dual has the same polyhedral graph as the Rectified Truncated Icosahedron
(values below based on maximum vertex radius = sqrt(3))
Short Edge (60):  sqrt(root[8th-order polynomial])    ≈0.57241954802936549458
Long Edge (120):  sqrt(root[8th-order polynomial])    ≈0.708486378227489818648
Kite Length:  sqrt(root[8th-order polynomial])    ≈1.0985717598179975037
Kite Width:  root[8th-order polynomial]    ≈0.65360869398352301090
Rhombus Length:  sqrt(5)−1    ≈1.2360679774997896964
Rhombus Width:  root[8th-order polynomial]    ≈0.69278261203295397820
[3]-Vertex Radius (60):  sqrt(root[8th-order polynomial])    ≈1.6546966264647110399
[5]-Vertex Radius (12):  sqrt(root[8th-order polynomial])    ≈1.6946382675713183817
[6]-Vertex Radius (20):  sqrt(3)    ≈1.73205080756887729353
Edge-scribed Radius:  sqrt(root[8th-order polynomial])    ≈1.6460070544630470430
Kite Center Radius:  sqrt(root[8th-order polynomial])    ≈1.6219678925617243658
Rhombus Center Radius:  (1+sqrt(5))/2    ≈1.6180339887498948482
Volume:root[8th-order polynomial]    ≈18.574140359956118378


References:[1]Canonical Polyhedron (Wolfram MathWorld)
[2]Conway Notation for Polyhedra (George Hart)