Vertices: | 92 (60[3] + 12[5] + 20[6]) |
Faces: | 90 (60 kites + 30 rhombi) |
Edges: | 180 (60 short + 120 long) |
Symmetry: | Full Icosahedral (Ih) |
Rhombus-Kite Angle: | acos(−sqrt(root[8th-order polynomial])) | ≈159.617689297 degrees |
Kite-Kite Angle: | acos(root[8th-order polynomial]) | ≈160.391633417 degrees |
The dual has the same polyhedral graph as the Rectified Truncated Icosahedron |
(values below based on maximum vertex radius = sqrt(3)) |
Short Edge (60): | sqrt(root[8th-order polynomial]) | ≈0.57241954802936549458 |
Long Edge (120): | sqrt(root[8th-order polynomial]) | ≈0.708486378227489818648 |
Kite Length: | sqrt(root[8th-order polynomial]) | ≈1.0985717598179975037 |
Kite Width: | root[8th-order polynomial] | ≈0.65360869398352301090 |
Rhombus Length: | sqrt(5)−1 | ≈1.2360679774997896964 |
Rhombus Width: | root[8th-order polynomial] | ≈0.69278261203295397820 |
[3]-Vertex Radius (60): | sqrt(root[8th-order polynomial]) | ≈1.6546966264647110399 |
[5]-Vertex Radius (12): | sqrt(root[8th-order polynomial]) | ≈1.6946382675713183817 |
[6]-Vertex Radius (20): | sqrt(3) | ≈1.73205080756887729353 |
Edge-scribed Radius: | sqrt(root[8th-order polynomial]) | ≈1.6460070544630470430 |
Kite Center Radius: | sqrt(root[8th-order polynomial]) | ≈1.6219678925617243658 |
Rhombus Center Radius: | (1+sqrt(5))/2 | ≈1.6180339887498948482 |
Volume: | root[8th-order polynomial] | ≈18.574140359956118378 |