(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Canonical Joined Truncated Icosahedron
 Vertices: 92  (60 + 12 + 20) Faces: 90  (60 kites + 30 rhombi) Edges: 180  (60 short + 120 long) Symmetry: Full Icosahedral  (Ih) Rhombus-Kite Angle: acos(−sqrt(root[8th-order polynomial])) ≈159.617689297 degrees Kite-Kite Angle: acos(root[8th-order polynomial]) ≈160.391633417 degrees The dual has the same polyhedral graph as the Rectified Truncated Icosahedron (values below based on maximum vertex radius = sqrt(3)) Short Edge (60): sqrt(root[8th-order polynomial]) ≈0.57241954802936549458 Long Edge (120): sqrt(root[8th-order polynomial]) ≈0.708486378227489818648 Kite Length: sqrt(root[8th-order polynomial]) ≈1.0985717598179975037 Kite Width: root[8th-order polynomial] ≈0.65360869398352301090 Rhombus Length: sqrt(5)−1 ≈1.2360679774997896964 Rhombus Width: root[8th-order polynomial] ≈0.69278261203295397820 -Vertex Radius (60): sqrt(root[8th-order polynomial]) ≈1.6546966264647110399 -Vertex Radius (12): sqrt(root[8th-order polynomial]) ≈1.6946382675713183817 -Vertex Radius (20): sqrt(3) ≈1.73205080756887729353 Edge-scribed Radius: sqrt(root[8th-order polynomial]) ≈1.6460070544630470430 Kite Center Radius: sqrt(root[8th-order polynomial]) ≈1.6219678925617243658 Rhombus Center Radius: (1+sqrt(5))/2 ≈1.6180339887498948482 Volume: root[8th-order polynomial] ≈18.574140359956118378