Catalan Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Disdyakis Dodecahedron
canonical form
Vertices:  26  (12[4] + 8[6] + 6[8])
Faces:48  (acute triangles)
Edges:72  (24 short + 24 medium + 24 long)
Symmetry:  Full Octahedral  (Oh)
Dihedral Angle:  acos(−(71+12*sqrt(2))/97)    ≈155.082179617 degrees
Dual Solid:  Truncated Cuboctahedron
(values below based on unit-edge-length Truncated Cuboctahedron)
Short Edge (24):  2*sqrt(3*(10−sqrt(2)))/7    ≈1.4500488186822163018
Medium Edge (24):  3*sqrt(6*(2+sqrt(2)))/7    ≈1.9397429472460411059
Long Edge (24):  2*sqrt(6*(10+sqrt(2)))/7    ≈2.3644524131865197592
[4]-Vertex Radius (12):  3*(4+sqrt(2))/7    ≈2.3203772410170407352
[6]-Vertex Radius (8):  sqrt(6)    ≈2.4494897427831780982
[8]-Vertex Radius (6):  3*(2+3*sqrt(2))/7    ≈2.6754174373368364913
Edge-scribed Radius:  sqrt(6*(2+sqrt(2)))/2    ≈2.2630334384537146236
Inscribed Radius:  sqrt(1746*(15+8*sqrt(2)))/97    ≈2.2097412102566332828
Volume:144*(1+sqrt(2))/7    ≈49.663821854532241004


References:[1]Eugène Catalan, Mémoire sur la Théorie des Polyèdres,
Journal de l'École polytechnique 41 (1865), 1-71, +7 plates.