Self-Intersecting Quasi-Quasi-Regular Polyhedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

(Uniform #61) Great Dodecicosidodecahedron
Vertices:  60  (60[4])
Faces:44  (20 equilateral triangles + 12 regular pentagrams
    + 12 regular decagrams)
Edges:120
Symmetry:  Full Icosahedral  (Ih)
Decagram-Triangle Angle:  acos(−sqrt(15*(5−2*sqrt(5)))/15)    ≈100.812316964 degrees
Decagram-Pentagram Angle:  acos(−sqrt(5)/5)    ≈116.565051177 degrees
Dual Solid:  Great Dodecacronic Hexecontahedron
(values below based on edge length = 1)
Circumscribed Radius:  sqrt(11−4*sqrt(5))/2    ≈0.71689052337174209824
Midscribed Radius:  sqrt(2*(5−2*sqrt(5)))/2    ≈0.51374314837300779674
Decagram Center Radius:  sqrt(5−2*sqrt(5))/2    ≈0.363271264002680442948
Triangle Center Radius:  (2*sqrt(15)−3*sqrt(3))/6    ≈0.42496904495136698163
Pentagram Center Radius:  3*sqrt(5*(5−2*sqrt(5)))/10    ≈0.48737954434935948923


References:[1]Jean Paul Albert Badoureau, Mémoire sur les Figures Isocèles,
Journal de l'École polytechnique 49 (1881), 47-172.
[2]Johann Pitsch, Über Halbreguläre Sternpolyeder,
Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216.