Self-Intersecting Quasi-Quasi-Regular Duals

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Great Hexacronic Icositetrahedron
Vertices:  20  (8[3] + 6[4] + 6[8])
Faces:24  (kites)
Edges:48  (24 short + 24 long)
Symmetry:  Full Octahedral  (Oh)
Dihedral Angle:  acos(−(7−4*sqrt(2))/17)    ≈94.531580798 degrees
Dual Solid:  Great Cubicuboctahedron
(values below based on unit-edge-length Great Cubicuboctahedron)
Short Edge (24):  2*sqrt(2*(26−17*sqrt(2)))/7    ≈0.56545007389380691572
Long Edge (24):  2*sqrt(2−sqrt(2))    ≈1.5307337294603590869
Kite Length:  2*sqrt(31+8*sqrt(2))/7    ≈1.8585425164981857394
Kite Width:  2*(sqrt(2)−1)    ≈0.82842712474619009760
[4]-Vertex Radius (6):  2−sqrt(2)    ≈0.58578643762690495120
[3]-Vertex Radius (8):  (4*sqrt(3)−sqrt(6))/7    ≈0.63981621249890443942
[8]-Vertex Radius (6):  sqrt(2)    ≈1.4142135623730950488
Edge-scribed Radius:  sqrt(2*(2−sqrt(2)))/2    ≈0.54119610014619698440
Inscribed Radius:  sqrt(34*(7−4*sqrt(2)))/17    ≈0.39751370683102677943