Self-Intersecting Quasi-Quasi-Regular Duals
(box: x-ray)
(F: faces)
(slider: perspective)
(image: L=rotate R=zoom)
(M: metrics)
Please use a browser that supports "canvas"
Great Hexacronic Icositetrahedron
Vertices:
20 (8[3] + 6[4] + 6[8])
Faces:
24 (kites)
Edges:
48 (24 short + 24 long)
Symmetry:
Full Octahedral (Oh)
Dihedral Angle:
acos(−(7−4*sqrt(2))/17)
≈94.531580798 degrees
Dual Solid:
Great Cubicuboctahedron
(values below based on unit-edge-length Great Cubicuboctahedron)
Short Edge (24):
2*sqrt(2*(26−17*sqrt(2)))/7
≈0.56545007389380691572
Long Edge (24):
2*sqrt(2−sqrt(2))
≈1.5307337294603590869
Kite Length:
2*sqrt(31+8*sqrt(2))/7
≈1.8585425164981857394
Kite Width:
2*(sqrt(2)−1)
≈0.82842712474619009760
[4]-Vertex Radius (6):
2−sqrt(2)
≈0.58578643762690495120
[3]-Vertex Radius (8):
(4*sqrt(3)−sqrt(6))/7
≈0.63981621249890443942
[8]-Vertex Radius (6):
sqrt(2)
≈1.4142135623730950488
Edge-scribed Radius:
sqrt(2*(2−sqrt(2)))/2
≈0.54119610014619698440
Inscribed Radius:
sqrt(34*(7−4*sqrt(2)))/17
≈0.39751370683102677943