Dipyramids & Trapezohedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Heptagonal Trapezohedron
Vertices:  16  (14[3] + 2[7])
Faces:14  (tri-equiangular kites)
Edges:28  (14 short + 14 long)
Symmetry:  7-fold Antiprismatic  (D7v)
Dihedral Angle:  acos(-root[13*(x^3)+(x^2)−5*x−1])    
    = acos(−(8*(cos(π/7)^2)+8*cos(π/7)−5)/13)    
≈132.017867361 degrees
Dual Solid:  Heptagonal Antiprism
(values below based on unit-edge-length Heptagonal Antiprism)
Short Edge (14):  sqrt(root[(x^3)+3*(x^2)−4*x+1])    
    = sqrt(3−tan(2*π/7)^2)/2    
≈0.59740762289429270714
Long Edge (14):  sqrt(root[(x^3)−9*(x^2)−x+1])    
    = sqrt(2*(cot(π/14)^2−1))/2    
≈3.0162617059937969890
[3]-Vertex Radius (14):  sqrt(root[64*(x^3)−48*(x^2)−72*x+27])    
    = sqrt(6*cos(π/7))/2    
≈1.1625202371802517096
[7]-Vertex Radius (2):  sqrt(root[64*(x^3)−560*(x^2)+56*x+7])    
    = sqrt(2*(16*(cos(π/7)^2)+7*cos(π/7)−2))/2    
≈2.9406377276185179666
Edge-scribed Radius:  root[8*(x^3)−8*(x^2)−2*x+1] = 1/(4*sin(π/14))    ≈1.12348980185873353053
Inscribed Radius:  sqrt(root[832*(x^3)−944*(x^2)+72*x−1])    
    = sqrt(26*(24*(cos(π/7)^2)+11*cos(π/7)−2))/26    
≈1.0264302435969231281
Volume:sqrt(root[46656*(x^3)−2921184*(x^2)    
    +259308*x+117649])    
    = 7*sqrt(7+40*cos(2*π/7)+36*(cos(2*π/7)^2))/6    
≈7.9070582883157986171