Vertices: | 16 (14[3] + 2[7]) |
Faces: | 14 (tri-equiangular kites) |
Edges: | 28 (14 short + 14 long) |
Symmetry: | 7-fold Antiprismatic (D7v) |
Dihedral Angle: | acos(-root[13*(x^3)+(x^2)−5*x−1]) = acos(−(8*(cos(π/7)^2)+8*cos(π/7)−5)/13) | ≈132.017867361 degrees |
Dual Solid: | Heptagonal Antiprism |
(values below based on unit-edge-length Heptagonal Antiprism) |
Short Edge (14): | sqrt(root[(x^3)+3*(x^2)−4*x+1]) = sqrt(3−tan(2*π/7)^2)/2 | ≈0.59740762289429270714 |
Long Edge (14): | sqrt(root[(x^3)−9*(x^2)−x+1]) = sqrt(2*(cot(π/14)^2−1))/2 | ≈3.0162617059937969890 |
[3]-Vertex Radius (14): | sqrt(root[64*(x^3)−48*(x^2)−72*x+27]) = sqrt(6*cos(π/7))/2 | ≈1.1625202371802517096 |
[7]-Vertex Radius (2): | sqrt(root[64*(x^3)−560*(x^2)+56*x+7]) = sqrt(2*(16*(cos(π/7)^2)+7*cos(π/7)−2))/2 | ≈2.9406377276185179666 |
Edge-scribed Radius: | root[8*(x^3)−8*(x^2)−2*x+1] = 1/(4*sin(π/14)) | ≈1.12348980185873353053 |
Inscribed Radius: | sqrt(root[832*(x^3)−944*(x^2)+72*x−1]) = sqrt(26*(24*(cos(π/7)^2)+11*cos(π/7)−2))/26 | ≈1.0264302435969231281 |
Volume: | sqrt(root[46656*(x^3)−2921184*(x^2) +259308*x+117649]) = 7*sqrt(7+40*cos(2*π/7)+36*(cos(2*π/7)^2))/6 | ≈7.9070582883157986171 |