Vertices: | 16 (14[3] + 2[7]) |
Faces: | 14 (tri-equiangular kites) |
Edges: | 28 (14 short + 14 long) |
Symmetry: | 7-fold Prismatic (D7h) |
Dihedral Angle: | acos(−root[29*(x^3)+25*(x^2)+3*x−1]) = acos(−(16*cos(π/7)−3/cos(π/7)−7)/29) | ≈98.099236410 degrees |
Dual Solid: | Heptagrammic 7/2 Antiprism |
(values below based on unit-edge-length Heptagrammic 7/2 Antiprism) |
Short Edge (14): | sqrt(root[(x^3)−(x^2)−2*x+1]) = sqrt(2*sin(π/14)) | ≈0.66711458379548922029 |
Long Edge (14): | sqrt(root[49*(x^3)−49*(x^2)+7*x+1]) = sqrt((4*cos(2*π/7)+3)/7) | ≈0.88591834575645160399 |
[7]-Vertex Radius (2): | sqrt(root[3136*(x^3)−2352*(x^2)+224*x+1]) = sqrt((2*cos(π/7)+5*cos(2*π/7)+4)/14) | ≈0.79818484903017411908 |
[3]-Vertex Radius (14): | sqrt(root[448*(x^3)−336*(x^2)+27]) = sqrt(9−3*cot(2*π/7)*cot(2*π/7))/4 | ≈0.66577532725355454110 |
Edge-scribed Radius: | sqrt(root[448*(x^3)−224*(x^2)+28*x−1]) = 1/(4*sin(π/7)) | ≈0.57619121774062162631 |
Inscribed Radius: | sqrt(root[12992*(x^3)−3024*(x^2)+112*x−1]) = sqrt((236*cos(π/7)−37/cos(π/7)+136)/1624) | ≈0.43518423074173060634 |