Vertices: | 16 (14[3] + 2[7]) |
Faces: | 14 (tri-equiangular darts) |
Edges: | 28 (14 short + 14 long) |
Symmetry: | 7-fold Prismatic (D7h) |
Dihedral Angle: | acos(root[29*(x^3)−25*(x^2)+3*x+1]) = acos((4*cos(π/7)−4/cos(π/7)+13)/29) | ≈65.199782304 degrees |
Dual Solid: | Heptagrammic Crossed Antiprism |
(values below based on unit-edge-length Heptagrammic Crossed Antiprism) |
Short Edge (14): | sqrt(root[49*(x^3)−49*(x^2)+7*x+1]) = sqrt((1+1/cos(π/7))/7) | ≈0.54901421581578408197 |
Long Edge (14): | sqrt(root[(x^3)−(x^2)−2*x+1]) = sqrt(2*cos(π/7)) | ≈1.34236274374881182951 |
[7]-Vertex Radius (2): | sqrt(root[3136*(x^3)−2352*(x^2)+224*x+1]) = sqrt((6−8*cos(π/7)+7/cos(π/7))/56) | ≈0.34230476463661118578 |
[3]-Vertex Radius (14): | sqrt(root[448*(x^3)−336*(x^2)+27]) = sqrt(9−3*tan(π/14)*tan(π/14))/4 | ≈0.74345959663231443270 |
Edge-scribed Radius: | sqrt(root[448*(x^3)−224*(x^2)+28*x−1]) = 1/(4*sin(2*π/7)) | ≈0.31976200192248315144 |
Inscribed Radius: | sqrt(root[12992*(x^3)−3024*(x^2)+112*x−1]) = sqrt((90−74*sin(π/14)−11/sin(π/14))/812) | ≈0.17227791302733717566 |