Vertices: | 12 (6[5] + 6[7]) |
Faces: | 24 (isosceles triangles) |
Edges: | 36 (12 short + 24 long) |
Symmetry: | 3-fold Antiprismatic (D3v) |
Dihedral Angle 1 (6): | acos(sqrt(2)/2) | 45 degrees |
Dihedral Angle 2 (6): | acos((2−sqrt(2))/4) | ≈81.578941882 degrees |
Dihedral Angle 3 (6): | acos(−sqrt(2)/2) | 135 degrees |
Dihedral Angle 4 (12): | acos(−(1+2*sqrt(2))/4) | ≈163.157883764 degrees |
Dihedral Angle 5 (6): | acos(−(2+sqrt(2))/8) | ≈244.736825646 degrees |
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi) |
Short Edge (12): | sqrt(3) | ≈1.73205080756887729353 |
Long Edge (24): | sqrt(3*(5+2*sqrt(2)))/2 | ≈2.42308075465091393499 |
[5]-Vertex Radius (6): | sqrt(3*(17+10*sqrt(2)))/4 | ≈2.4164334109280878788 |
[7]-Vertex Radius (6): | sqrt(3*(9+2*sqrt(2)))/4 | ≈1.4892380890542353582 |
Volume: | 3*(sqrt(3)+sqrt(6)) | ≈12.5446216510561661752 |
|