Archimedean-Catalan Hulls

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Joined Truncated Cuboctahedron
Vertices:  74  (48[3] + 12[4] + 8[6] + 6[8])
Faces:72  (24 short kites + 24 medium kites + 24 long kites)
Edges:144  (48 short + 48 medium + 48 long)
Symmetry:  Full Octahedral  (Oh)
Long Edge Angle:  acos(−11/12)    ≈156.443535691 degrees
Medium Edge Angle:  acos(−(6+sqrt(2))/8)    ≈157.937808842 degrees
Short Edge Angle:  acos(−(10+sqrt(2))/12)    ≈162.023738221 degrees
(values below based on unit-edge-length Truncated Cuboctahedron)
Short Edge (48):  sqrt(109−6*sqrt(2))/14    ≈0.71612163566688262435498
Medium Edge (48):  sqrt(13−6*sqrt(2))/2    ≈1.0623933623853066161
Long Edge (48):  sqrt(23)*(3+sqrt(2))/14    ≈1.5121303252188161974
Short Kite Length:  2*sqrt(3*(10−sqrt(2)))/7    ≈1.4500488186822163018
Short Kite Width:  1
Medium Kite Length:  3*sqrt(6*(2+sqrt(2)))/7    ≈1.9397429472460411059
Medium Kite Width:  1
Long Kite Length:  2*sqrt(6*(10+sqrt(2)))/7    ≈2.3644524131865197592
Long Kite Width:  1
[3]-Vertex Radius (48):  sqrt(13+6*sqrt(2))/2    ≈2.3176109128927665138
[4]-Vertex Radius (12):  3*(4+sqrt(2))/7    ≈2.3203772410170407352
[6]-Vertex Radius (8):  sqrt(6)    ≈2.4494897427831780982
[8]-Vertex Radius (6):  3*(2+3*sqrt(2))/7    ≈2.6754174373368364913
Inscribed Radius:  sqrt(6*(2+sqrt(2)))/2    ≈2.2630334384537146236
Volume:12*(12+13*sqrt(2))/7    ≈52.088187961457546802


References:[1]Conway Notation for Polyhedra (George Hart)