Vertices: | 92 (60[3] + 12[5] + 20[6]) |
Faces: | 90 (60 wide rhombi + 30 thin rhombi) |
Edges: | 180 (equal length) |
Symmetry: | Full Icosahedral (Ih) |
Thin-Wide Dihedral Angle: | acos(−(3*sqrt(2)+sqrt(10))/8) | ≈157.761243907 degrees |
Wide-Wide Dihedral Angle: | acos(−(1+3*sqrt(5))/8) | ≈164.477512186 degrees |
The dual has the same polyhedral graph as the Rectified Truncated Icosahedron |
(values below based on edge length = 1) |
Wide Rhombus Length: | 2*sqrt(6)/3 | ≈1.63299316185545206546 |
Wide Rhombus Width: | 2*sqrt(3)/3 | ≈1.1547005383792515290 |
Thin Rhombus Length: | (sqrt(3)+sqrt(15))/3 | ≈1.8683447179254313929 |
Thin Rhombus Width: | (sqrt(15)−sqrt(3))/3 | ≈0.7136441795461798639 |
[3]-Vertex Radius (60): | (sqrt(21)+sqrt(105))/6 | ≈2.4715877434859063983 |
[5]-Vertex Radius (12): | sqrt(30*(5+sqrt(5)))/6 | ≈2.4556173659421150570 |
[6]-Vertex Radius (20): | (3+sqrt(5))/2 | ≈2.6180339887498948482 |
Wide Rhombus Center Radius: | (5*sqrt(6)+3*sqrt(30))/12 | ≈2.3899271199225728246 |
Thin Rhombus Center Radius: | (2*sqrt(3)+sqrt(15))/3 | ≈2.4456949871150571574 |
Volume: | 20*(7*sqrt(3)+4*sqrt(15))/9 | ≈61.369531195137352434 |