Simplest Canonical Polyhedra of Each Symmetry Type

There are 17 possible types of symmetry that a polyhedron can have. The following table shows the characteristics of these symmetry types.

Symmetry Types in 3 Dimensions

Schönflies Orbifold Symmetry Name Rotation Axes Highest Rotation Axis Order Mirror Planes Rotations Improper Rotations Invertible?
C1 1 No Symmetry 0 1 0 1 0 no
Ci=S2 x Inversion 0 1 0 1 1 yes
Cs=C1h=C1v * Reflection 0 1 1 1 1 no
Cn nn Cyclic 1 n 0 n 0 no
Cnh (n odd) n* Cyclic + Orthogonal Reflection 1 n 1 n n no
Cnh (n even) n* Cyclic + Orthogonal Reflection 1 n 1 n n yes
Cnv *nn Pyramidal 1 n n n n no
S2n (n even) nx Rotoreflection 1 n 0 n n no
S2n (n odd) nx Rotoreflection 1 n 0 n n yes
Dn 22n Dihedral n+1 n 0 2*n 0 no
Dnh (n odd) *22n Prismatic n+1 n n+1 2*n 2*n no
Dnh (n even) *22n Prismatic n+1 n n+1 2*n 2*n yes
Dnv (n even) 2*n Antiprismatic n+1 n n 2*n 2*n no
Dnv (n odd) 2*n Antiprismatic n+1 n n 2*n 2*n yes
T 332 Chiral Tetrahedral 7 3 0 12 0 no
Td *332 Full Tetrahedral 7 3 6 12 12 no
Th 3*2 Pyritohedral 7 3 3 12 12 yes
O 432 Chiral Octahedral 13 4 0 24 0 no
Oh *432 Full Octahedral 13 4 9 24 24 yes
I 532 Chiral Icosahedral 31 5 0 60 0 no
Ih *532 Full Icosahedral 31 5 15 60 60 yes

The simplest canonical polyhedra of each symmetry type can be accessed using the links below. Simplicity is based on the number of edges in the polyhedron.

C1
Ci=S2
Cs=C1h=C1v
C2
C3
C4
C2h
C2v
C3v
C4v
C5v
C6v
C7v
C8v
C9v
C10v
C11v
S4
S6
D2
D3
D2h
D3h
D4h
D5h
D6h
D7h
D8h
D9h
D10h
D2v
D3v
D4v
D5v
D6v
T
Td
Th
O
Oh
I
Ih