Vertices: | 9 (3[3] + 3[4] + 3[5]) |
Faces: | 11 ({1 + 1} equilateral triangles + 3 isosceles triangles + 3 obtuse triangles + 3 irregular tetragons) |
Edges: | 18 (5 different lengths) |
Symmetry: | 3-fold Cyclic (C3) |
Dual Solid: | Simplest C3 (2 of 5) |
(values below based on edge-scribed radius = 1) |
Edge 1 (3): | sqrt(root[12th-order polynomial]) | ≈1.0620319330769333613 |
Edge 2 (6): | sqrt(root[12th-order polynomial]) | ≈1.3440716787175049274 |
Edge 3 (3): | sqrt(root[12th-order polynomial]) | ≈1.5536433675564391204 |
Edge 4 (3): | sqrt(root[12th-order polynomial]) | ≈1.8356831131970106866 |
Edge 5 (3): | sqrt(root[12th-order polynomial]) | ≈2.1177228588375822527 |
Edge-scribed Radius: | 1 |
Volume: | sqrt(root[12th-order polynomial]) | ≈3.7440814913943196357 |