Vertices: | 6 (1[3] + 2[3] + 2[4] + 1[5]) |
Faces: | 7 ({1 + 1} isosceles triangles + {2 opposite + 2 opposite} obtuse triangles + 1 isosceles trapezoid) |
Edges: | 11 (7 different lengths) |
Symmetry: | Reflection (Cs = C1h = C1v) |
Dual Solid: | Simplest Cs (2 of 2) |
(values below based on edge-scribed radius = 1) |
Edge 1 (1): | sqrt(root[34th-order polynomial]) | ≈1.0098178742901231455003 |
Edge 2 (2): | sqrt(root[34th-order polynomial]) | ≈1.7583556228160815837 |
Edge 3 (2): | sqrt(root[34th-order polynomial]) | ≈1.8786323035563270292 |
Edge 4 (1): | sqrt(root[34th-order polynomial]) | ≈2.7474467328225309129 |
Edge 5 (1): | sqrt(root[34th-order polynomial]) | ≈2.7982651841390281996 |
Edge 6 (2): | sqrt(root[34th-order polynomial]) | ≈2.9185418648792736451 |
Edge 7 (2): | sqrt(root[34th-order polynomial]) | ≈3.7873562941454775288 |
Edge-scribed Radius: | 1 |
Volume: | sqrt(root[34th-order polynomial]) | ≈4.1331164969232550008 |