Vertices: | 7 (1[3] + 1[3] + 2[3] + 2[3] + 1[4]) |
Faces: | 6 (1 isosceles triangle + 2 opposite acute triangles + 2 opposite irregular tetragons + 1 mirror-symmetric pentagon) |
Edges: | 11 (7 different lengths) |
Symmetry: | Reflection (Cs = C1h = C1v) |
Dual Solid: | Simplest Cs (1 of 2) |
(values below based on edge-scribed radius = 1) |
Edge 1 (2): | sqrt(root[34th-order polynomial]) | ≈1.2127549163785345388 |
Edge 2 (2): | sqrt(root[34th-order polynomial]) | ≈1.2677400002019117724 |
Edge 3 (1): | sqrt(root[34th-order polynomial]) | ≈1.3270523242606989007 |
Edge 4 (2): | sqrt(root[34th-order polynomial]) | ≈1.4631651312583255486 |
Edge 5 (1): | sqrt(root[34th-order polynomial]) | ≈1.9726817081625627444 |
Edge 6 (1): | sqrt(root[34th-order polynomial]) | ≈2.0538094313368121586 |
Edge 7 (2): | sqrt(root[34th-order polynomial]) | ≈2.3042196462166031684 |
Edge-scribed Radius: | 1 |
Volume: | sqrt(root[34th-order polynomial]) | ≈2.4688834863205429376 |