Simplest Canonical Polyhedra of Each Symmetry Type

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Simplest Canonical Polyhedron with I Symmetry
(Pentagonal Hexecontahedron)
(2 of 4)
Vertices:  92  (80[3] + 12[5])
Faces:60  (mirror-symmetric pentagons)
Edges:150  (90 short + 60 long)
Symmetry:  Chiral Icosahedral  (I)
Dihedral Angle:  acos(−(2*(x+(2/x))*(1+15*phi)    
    +(15+16*phi))/209)    
≈153.178732558 degrees
where:  phi = (1+sqrt(5))/2
x = cbrt((phi+sqrt(phi−5/27))/2)+cbrt((phi−sqrt(phi−5/27))/2)
Dual Solid:  Snub Dodecahedron
(values below based on edge-scribed radius = 1)
Short Edge (90):  2*sqrt(3−(x^2))/x    ≈0.27796116863872106624
Long Edge (60):  2*sqrt((x^2)*(218+81*phi)+x*(49*phi−141)    
    −(23+251*phi))/(31*(x^2))    
≈0.486391064395460573049
[3]-Vertex Radius (80):  sqrt(3)/x    ≈1.0096116098865696398
[5]-Vertex Radius (12):  sqrt(2*(x^2)*(63*phi−44)+x*(101+183*phi)    
    +4*(258−151*phi))/31    
≈1.0586283775087017300
Edge-scribed Radius:  1
Inscribed Radius:  sqrt(209*(2*((x^2)+2)*(14+phi)    
    +x*(1+15*phi)))/209    
≈0.97273285056559586532
Volume:20*(−(7+9*phi)+(57−2*phi)/x+2*(3−5*phi)    
    /(x^2))/31    
≈4.0759173979281626204