Simplest Canonical Polyhedra of Each Symmetry Type

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Simplest Canonical Polyhedron with O Symmetry
(Pentagonal Icositetrahedron)
(2 of 4)
Vertices:  38  (32[3] + 6[4])
Faces:24  (mirror-symmetric pentagons)
Edges:60  (36 short + 24 long)
Symmetry:  Chiral Octahedral  (O)
Dihedral Angle:  acos((1−cbrt(2*(283+21*sqrt(33)))    
    −cbrt(2*(283−21*sqrt(33))))/21)    
≈136.309232892 degrees
Dual Solid:  Snub Cube
(values below based on edge-scribed radius = 1)
Short Edge (36):  sqrt(2*(2−cbrt(2*(13+3*sqrt(33)))    
    +cbrt(2*(3*sqrt(33)−13))))    
≈0.47582932325308764446
Long Edge (24):  sqrt(3*(4−cbrt(17+3*sqrt(33))    
    +cbrt(3*sqrt(33)−17)))/3    
≈0.67550794762750470428
[3]-Vertex Radius (32):  sqrt(2*(4−cbrt(2*(13+3*sqrt(33)))    
    +cbrt(2*(3*sqrt(33)−13))))/2    
≈1.0279121490754318561
[4]-Vertex Radius (6):  sqrt(6*(cbrt(6*(9+sqrt(33)))    
    +cbrt(6*(9−sqrt(33)))))/6    
≈1.0915529689177336240
Edge-scribed Radius:  1
Inscribed Radius:  sqrt(42*(20+cbrt(2*(283+21*sqrt(33)))    
    +cbrt(2*(283−21*sqrt(33)))))/42    
≈0.92819137798557160941
Volume:4*sqrt(6*(27−4*cbrt(3*(63+11*sqrt(33)))    
    +4*cbrt(3*(11*sqrt(33)−63))))/3    
≈3.8385914460594167728