Self-Intersecting Snub Quasi-Regular Duals

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Small Hexagrammic Hexecontahedron
Vertices:  112  (100[3] + 12[5])
Faces:60  (mirror-symmetric hexagons)
Edges:180  (60 short + 120 long)
Symmetry:  Full Icosahedral  (Ih)
Dihedral Angle:  acos((3−5*sqrt(5)    
    +sqrt(2*(299+159*sqrt(5))))/58)    
≈61.133452274 degrees
Dual Solid:  Small Retrosnub Icosicosidodecahedron
(values below based on unit-edge-length Small Retrosnub Icosicosidodecahedron)
Short Edge (60):  sqrt(13+7*sqrt(5)    
    +sqrt(22*(9+5*sqrt(5))))/6    
≈1.1752424290083404643
Long Edge (120):  sqrt(9+3*sqrt(5)    
    +sqrt(2*(51+23*sqrt(5))))/2    
≈2.7395759092675981069
[5]-Vertex Radius (12):  sqrt(2*(35+17*sqrt(5)    
    −2*sqrt(10*(51+23*sqrt(5)))))/12    
≈0.35363033303643561588
[3]-Vertex Radius (100):  (sqrt(3)+sqrt(15))/4    ≈1.4012585384440735447
Edge-scribed Radius:  sqrt(9+3*sqrt(5)    
    −sqrt(2*(51+23*sqrt(5))))/4    
≈0.29530738375898155383
Inscribed Radius:  sqrt(58*(103+41*sqrt(5)    
    −2*sqrt(2*(2239+1005*sqrt(5)))))/116    
≈0.15017604924732007711