Vertices: | 60 (60[4]) |
Faces: | 52 (20 equilateral triangles + 12 regular pentagrams + 20 regular hexagons) |
Edges: | 120 |
Symmetry: | Full Icosahedral (Ih) |
Hexagon-Triangle Angle: | acos(−sqrt(5)/3) | ≈138.189685104 degrees |
Hexagon-Pentagram Angle: | acos(−sqrt(15*(5+2*sqrt(5)))/15) | ≈142.622631859 degrees |
Dual Solid: | Small Icosacronic Hexecontahedron |
(values below based on edge length = 1) |
Circumscribed Radius: | sqrt(2*(17+3*sqrt(5)))/4 | ≈1.7214893236852853443 |
Midscribed Radius: | sqrt(6*(5+sqrt(5)))/4 | ≈1.6472782070926638518 |
Hexagon Center Radius: | (sqrt(3)+sqrt(15))/4 | ≈1.4012585384440735447 |
Triangle Center Radius: | (9*sqrt(3)+sqrt(15))/12 | ≈1.6217867178606093772 |
Pentagram Center Radius: | sqrt(10*(65+19*sqrt(5)))/20 | ≈1.6392474765307403412 |
References: | [1] | Johann Pitsch, Über Halbreguläre Sternpolyeder, Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216. |
|