Self-Intersecting Snub Quasi-Regular Polyhedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

(Uniform #32) Small Snub Icosicosidodecahedron
Vertices:  60  (60[6])
Faces:112  (100 equilateral triangles + 12 regular pentagrams)
Edges:180
Symmetry:  Full Icosahedral  (Ih)
Triangle-Triangle Angle:  acos(−sqrt(3+2*sqrt(5))/3)    ≈155.668041429 degrees
Pentagram-Triangle Angle:  acos(−sqrt(15*(15−2*sqrt(5)    
    +2*sqrt(5*(6*sqrt(5)−13))))/15)    
≈161.022582986 degrees
Dual Solid:  Small Hexagonal Hexecontahedron
(values below based on edge length = 1)
Circumscribed Radius:  sqrt(13+3*sqrt(5)    
    +sqrt(2*(51+23*sqrt(5))))/4    
≈1.4581903307387025510
Midscribed Radius:  sqrt(9+3*sqrt(5)    
    +sqrt(2*(51+23*sqrt(5))))/4    
≈1.36978795463379905346
Triangle Center Radius:  sqrt(3*(23+9*sqrt(5)    
    +3*sqrt(2*(51+23*sqrt(5)))))/12    
≈1.3390241623385716188
Pentagram Center Radius:  sqrt(5*(25+23*sqrt(5)    
    +5*sqrt(2*(51+23*sqrt(5)))))/20    
≈1.36011978825757318051


References:[1]H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller,
Uniform Polyhedra, Philosophical Transactions of the Royal Society of London.
Series A. Mathematical and Physical Sciences
246 (1954), 401-450.