To produce the table below, all 3-connected self-dual planar simple graphs
with up to 16 vertices were generated using the
plantri software developed by
Gunnar Brinkmann and Brendan McKay. From each graph, a canonical polyhedron
was produced and its symmetry determined. A self-dual polyhedron has the same
number of faces as vertices, so the table shows the counts of all canonical
self-dual polyhedra with up to 16 faces, cross tabulated by symmetry type and
number of faces. Many of the counts can be clicked to show representative
polyhedra.
Symmetries of All Canonical Self-Dual Polyhedra with up to 16 Faces
Symmetry
4 faces
5 faces
6 faces
7 faces
8 faces
9 faces
10 faces
11 faces
12 faces
13 faces
14 faces
15 faces
16 faces
TOTAL
C1
......
......
......
2
10
39
137
514
1817
6490
23199
83406
300928
416542
Ci = S2
......
......
......
......
......
......
1
......
2
......
8
......
29
40
Cs=C1h=C1v
......
......
......
......
1
4
7
16
41
76
180
346
746
1417
C2
......
......
1
1
3
4
10
18
37
68
155
275
587
1159
C3
......
......
......
......
......
......
3
......
......
12
......
......
52
67
C4
......
......
......
......
......
......
......
......
......
3
......
......
......
3
C5
......
......
......
......
......
......
......
......
......
......
......
......
3
3
C2h
......
......
......
......
......
......
......
......
2
......
3
......
5
10
C2v
......
......
......
......
......
......
2
3
5
4
7
18
18
57
C3v
......
......
......
2
......
......
3
......
......
8
......
......
23
36
C4v
......
1
......
......
......
2
......
......
......
3
......
......
......
6
C5v
......
......
1
......
......
......
......
2
......
......
......
......
3
6
C6v
......
......
......
1
......
......
......
......
......
2
......
......
......
3
C7v
......
......
......
......
1
......
......
......
......
......
......
2
......
3
C8v
......
......
......
......
......
1
......
......
......
......
......
......
......
1
C9v
......
......
......
......
......
......
1
......
......
......
......
......
......
1
C10v
......
......
......
......
......
......
......
1
......
......
......
......
......
1
C11v
......
......
......
......
......
......
......
......
1
......
......
......
......
1
C12v
......
......
......
......
......
......
......
......
......
1
......
......
......
1
C13v
......
......
......
......
......
......
......
......
......
......
1
......
......
1
C14v
......
......
......
......
......
......
......
......
......
......
......
1
......
1
C15v
......
......
......
......
......
......
......
......
......
......
......
......
1
1
S4
......
......
......
......
......
......
......
......
1
......
......
......
1
2
D2
......
......
......
......
......
......
1
......
2
......
3
......
6
12
D2h
......
......
......
......
1
......
......
......
......
......
......
......
......
1
D2v
......
......
......
......
......
......
......
......
......
......
......
......
1
1
T
......
......
......
......
......
......
......
......
......
......
......
......
1
1
Td
1
......
......
......
......
......
......
......
......
......
......
......
......
1
Th
......
......
......
......
......
......
......
......
......
......
......
......
......
......
O
......
......
......
......
......
......
......
......
......
......
......
......
......
......
Oh
......
......
......
......
......
......
......
......
......
......
......
......
......
......
I
......
......
......
......
......
......
......
......
......
......
......
......
......
......
Ih
......
......
......
......
......
......
......
......
......
......
......
......
......
......
TOTAL
1
1
2
6
16
50
165
554
1908
6667
23556
84048
302404
419378
non-C1
1
1
2
4
6
11
28
40
91
177
357
642
1476
2836
The following table shows the counts of all canonical self-dual polyhedra
with up to 16 faces that have symmetry type other than C1, cross tabulated
by number of different edge lengths and number of faces.
Edge Length Counts of Symmetric Canonical Self-Dual Polyhedra with up to 16 Faces
Edge lengths
4 faces
5 faces
6 faces
7 faces
8 faces
9 faces
10 faces
11 faces
12 faces
13 faces
14 faces
15 faces
16 faces
TOTAL
1 length
1
......
......
......
......
......
......
......
......
......
......
......
......
1
2 lengths
......
1
1
1
1
1
1
1
2
1
1
1
2
14
3 lengths
......
......
......
1
1
1
......
1
......
1
......
1
......
6
4 lengths
......
......
......
1
......
1
2
1
......
2
......
1
1
9
5 lengths
......
......
1
1
......
......
4
......
2
6
......
......
7
21
6 lengths
......
......
......
......
1
1
5
4
5
8
4
3
16
47
7 lengths
......
......
......
......
2
3
......
1
......
11
5
2
11
35
8 lengths
......
......
......
......
1
2
3
4
7
9
9
15
24
74
9 lengths
......
......
......
......
......
1
7
10
4
3
3
8
39
75
10 lengths
......
......
......
......
......
1
5
6
10
11
5
9
37
84
11 lengths
......
......
......
......
......
......
1
3
24
44
12
14
14
112
12 lengths
......
......
......
......
......
......
......
8
28
22
35
42
32
167
13 lengths
......
......
......
......
......
......
......
1
7
12
97
157
33
307
14 lengths
......
......
......
......
......
......
......
......
2
42
122
110
116
392
15 lengths
......
......
......
......
......
......
......
......
......
5
31
50
356
442
16 lengths
......
......
......
......
......
......
......
......
......
......
31
191
454
676
17 lengths
......
......
......
......
......
......
......
......
......
......
2
32
113
147
18 lengths
......
......
......
......
......
......
......
......
......
......
......
6
206
212
19 lengths
......
......
......
......
......
......
......
......
......
......
......
......
15
15
TOTAL
1
1
2
4
6
11
28
40
91
177
357
642
1476
2836