Regular Hexagonal Toroidal Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Szilassi Polyhedron (version 1)
version 1
Vertices:  14  (2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3])
Faces:7  (1 convex hexagon + {2 * 3} nonconvex hexagons)
Edges:21  (12 different lengths)
Symmetry:  2-fold Cyclic  (C2)
Dual Toroid:  Császár Polyhedron
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi)
Edge 1 (2):  5/2    2.5
Edge 2 (2):  5*sqrt(2)/2    ≈3.5355339059327376220
Edge 3 (2):  3*sqrt(106)/4    ≈7.7217226057402502368
Edge 4 (2):  18*sqrt(6)/5    ≈8.81816307401944115351
Edge 5 (2):  sqrt(1514)/4    ≈9.7275382291718596977
Edge 6 (1):  15*sqrt(2)/2    ≈10.606601717798212866
Edge 7 (2):  5*sqrt(21)/2    ≈11.456439237389600016
Edge 8 (2):  23/2    11.5
Edge 9 (2):  7*sqrt(206)/5    ≈20.093780132170253246
Edge 10 (2):  5*sqrt(21)    ≈22.912878474779200033
Edge 11 (1):  24
Edge 12 (1):  126/5    25.2
Volume:5226/5    1045.2


References:[1]On Some Regular Toroids (Lajos Szilassi)
[2]Lajos Szilassi, On Three Classes of Regular Toroids,
3rd International Conference APLIMAT 2004.
[3]the Szilassi polyhedron (Tom Ace)
[4]The Parametrized Szilassi Polyhedron