Self-Intersecting Truncated Regular Polyhedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

(Uniform #55) Truncated Great Icosahedron
Vertices:  60  (60[3])
Faces:32  (12 regular pentagrams + 20 regular hexagons)
Edges:90
Symmetry:  Full Icosahedral  (Ih)
Hexagon-Hexagon Angle:  acos(sqrt(5)/3)    ≈41.810314896 degrees
Hexagon-Pentagram Angle:  acos(−sqrt(15*(5−2*sqrt(5)))/15)    ≈100.812316964 degrees
Dual Solid:  Great Stellapentakis Dodecahedron
(values below based on edge length = 1)
Circumscribed Radius:  sqrt(2*(29−9*sqrt(5)))/4    ≈1.0532917569755953386
Midscribed Radius:  3*(sqrt(5)−1)/4    ≈0.92705098312484227231
Hexagon Center Radius:  (3*sqrt(3)−sqrt(15))/4    ≈0.330792269124803748851
Pentagram Center Radius:  sqrt(10*(125−41*sqrt(5)))/20    ≈0.91270494852537945532


References:[1]Johann Pitsch, Über Halbreguläre Sternpolyeder,
Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216.