Vertices: | 7 (2[6] + 2[6] + 2[6] + 1[6]) |
Faces: | 14 (triangles: 2 equilateral + 2 isosceles + 2 * 5 obtuse) |
Edges: | 21 (8 different lengths) |
Symmetry: | 2-fold Cyclic (C2) |
Dual Toroid: | Szilassi Polyhedron |
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi) |
Minimum Dihedral Angle: | ≈41.659881811 degrees |
Maximum Dihedral Angle: | ≈340.139216868 degrees |
Edge 1 (2): | sqrt(1238)/6 | ≈5.8642040285863936582 |
Edge 2 (1): | 10 |
Edge 3 (4): | 3*sqrt(70)/2 | ≈12.549900398011133220 |
Edge 4 (2): | 2*sqrt(374)/3 | ≈12.892719737209144120 |
Edge 5 (2): | 2*sqrt(662)/3 | ≈17.152907107024809578 |
Edge 6 (2): | 3*sqrt(134)/2 | ≈17.363755354185338210 |
Edge 7 (2): | sqrt(1398)/2 | ≈18.694919095839917542 |
Edge 8 (6): | 24 |
Volume: | 2644*sqrt(2)/3 | ≈1246.3935529714877697 |
References: | [1] | A Polyhedron Without Diagonals |
| [2] | Ákos Császár, A polyhedron without diagonals, Acta Scientiarum Mathematicarum (Szeged) 13 (1949), 140-142. |
| [3] | Lajos Szilassi, On Three Classes of Regular Toroids, 3rd International Conference APLIMAT 2004. |
|