Catalan Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Deltoidal Hexecontahedron
Vertices:  62  (20[3] + 30[4] + 12[5])
Faces:60  (kites)
Edges:120  (60 short + 60 long)
Symmetry:  Full Icosahedral  (Ih)
Dihedral Angle:  acos(−(19+8*sqrt(5))/41)    ≈154.121363126 degrees
Dual Solid:  Rhombicosidodecahedron
(values below based on unit-edge-length Rhombicosidodecahedron)
Short Edge (60):  sqrt(5*(85−31*sqrt(5)))/11    ≈0.80499198439381116988
Long Edge (60):  sqrt(5*(5−sqrt(5)))/3    ≈1.2391601148672816338
Kite Length:  sqrt(10*(157+31*sqrt(5)))/33    ≈1.44160311266941938547
Kite Width:  (5−sqrt(5))/2    ≈1.3819660112501051518
[3]-Vertex Radius (20):  (5*sqrt(3)+4*sqrt(15))/11    ≈2.1956534020612776371
[4]-Vertex Radius (30):  sqrt(5)    ≈2.2360679774997896964
[5]-Vertex Radius (12):  sqrt(5*(5+2*sqrt(5)))/3    ≈2.2939698674519558970
Edge-scribed Radius:  sqrt(2*(5+2*sqrt(5)))/2    ≈2.1762508994828215111
Inscribed Radius:  sqrt(205*(19+8*sqrt(5)))/41    ≈2.12099101951843341751
Volume:100*(5+4*sqrt(5))/33    ≈42.255369424239875108


References:[1]Eugène Catalan, Mémoire sur la Théorie des Polyèdres,
Journal de l'École polytechnique 41 (1865), 1-71, +7 plates.