Catalan Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Disdyakis Triacontahedron
canonical form
Vertices:  62  (30[4] + 20[6] + 12[10])
Faces:120  (acute triangles)
Edges:180  (60 short + 60 medium + 60 long)
Symmetry:  Full Icosahedral  (Ih)
Dihedral Angle:  acos(−(179+24*sqrt(5))/241)    ≈164.887891908 degrees
Dual Solid:  Truncated Icosidodecahedron
(values below based on unit-edge-length Truncated Icosidodecahedron)
Short Edge (60):  sqrt(15*(85−31*sqrt(5)))/11    ≈1.3942870166557737040
Medium Edge (60):  3*sqrt(15*(65+19*sqrt(5)))/55    ≈2.19017447980650378252
Long Edge (60):  2*sqrt(15*(5−sqrt(5)))/5    ≈2.5755459331956214849
[4]-Vertex Radius (30):  3*(5+4*sqrt(5))/11    ≈3.8029832481815887597
[6]-Vertex Radius (20):  sqrt(15)    ≈3.8729833462074168852
[10]-Vertex Radius (12):  3*sqrt(5*(5+2*sqrt(5)))/5    ≈4.1291457614135206146
Edge-scribed Radius:  sqrt(6*(5+2*sqrt(5)))/2    ≈3.7693771279217166027
Inscribed Radius:  sqrt(10845*(39+16*sqrt(5)))/241    ≈3.736646456083142448451
Volume:180*(5+4*sqrt(5))/11    ≈228.17899489089532558


References:[1]Eugène Catalan, Mémoire sur la Théorie des Polyèdres,
Journal de l'École polytechnique 41 (1865), 1-71, +7 plates.