Vertices: | 60 (60[3]) |
Faces: | 32 (20 equilateral triangles + 12 regular decagrams) |
Edges: | 90 |
Symmetry: | Full Icosahedral (Ih) |
Decagram-Decagram Angle: | acos(sqrt(5)/5) | ≈63.434948823 degrees |
Decagram-Triangle Angle: | acos(sqrt(15*(5−2*sqrt(5)))/15) | ≈79.187683036 degrees |
Dual Solid: | Great Triakis Icosahedron |
(values below based on edge length = 1) |
Circumscribed Radius: | sqrt(2*(37−15*sqrt(5)))/4 | ≈0.65755041037770961096 |
Midscribed Radius: | (3*sqrt(5)−5)/4 | ≈0.42705098312484227231 |
Decagram Center Radius: | sqrt(2*(25−11*sqrt(5)))/4 | ≈0.22451398828979268622 |
Triangle Center Radius: | (5*sqrt(15)−9*sqrt(3))/12 | ≈0.314704955243099065346 |
References: | [1] | Johann Pitsch, Über Halbreguläre Sternpolyeder, Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216. |
|