Self-Intersecting Truncated Quasi-Regular Polyhedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

(Uniform #20) Great Truncated Cuboctahedron
Vertices:  48  (48[3])
Faces:26  (12 squares + 8 regular hexagons + 6 regular octagrams)
Edges:72
Symmetry:  Full Octahedral  (Oh)
Hexagon-Square Angle:  acos(sqrt(6)/3)    ≈35.264389683 degrees
Octagram-Hexagon Angle:  acos(sqrt(3)/3)    ≈54.735610317 degrees
Octagram-Square Angle:  acos(−sqrt(2)/2)    135 degrees
Dual Solid:  Great Disdyakis Dodecahedron
(values below based on edge length = 1)
Circumscribed Radius:  sqrt(13−6*sqrt(2))/2    ≈1.0623933623853066161
Midscribed Radius:  sqrt(6*(2−sqrt(2)))/2    ≈0.93737914231134747753
Hexagon Center Radius:  −(sqrt(6)−sqrt(3))/2    ≈−0.35871946760715040233
Square Center Radius:  (3−sqrt(2))/2    ≈0.79289321881345247560
Octagram Center Radius:  (2*sqrt(2)−1)/2    ≈0.91421356237309504880


References:[1]Jean Paul Albert Badoureau, Mémoire sur les Figures Isocèles,
Journal de l'École polytechnique 49 (1881), 47-172.
[2]Johann Pitsch, Über Halbreguläre Sternpolyeder,
Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216.