Vertices: | 16 (14[3] + 2[7]) |
Faces: | 14 (tri-equiangular kites) |
Edges: | 28 (14 short + 14 long) |
Symmetry: | 7-fold Antiprismatic (D7v) |
Dihedral Angle: | acos(root[13*(x^3)−(x^2)−5*x+1]) = acos((4*cos(π/7)+2/cos(π/7)−3)/13) | ≈77.454883809 degrees |
Dual Solid: | Heptagrammic 7/3 Antiprism |
(values below based on unit-edge-length Heptagrammic 7/3 Antiprism) |
Short Edge (14): | sqrt(root[(x^3)−9*(x^2)−x+1]) = sqrt((tan(2*π/7)*tan(2*π/7)−1)/2) | ≈0.534984358851341664354 |
Long Edge (14): | sqrt(root[(x^3)+3*(x^2)−4*x+1]) = sqrt(3−tan(π/7)*tan(π/7))/2 | ≈0.83187827933544212092 |
[7]-Vertex Radius (2): | sqrt(root[64*(x^3)−560*(x^2)+56*x+7]) = sqrt(19−30*cos(π/7)+14*cos(2*π/7))/2 | ≈0.41826761437795289827 |
[3]-Vertex Radius (14): | sqrt(root[64*(x^3)−48*(x^2)−72*x+27]) = sqrt(6*sin(π/14))/2 | ≈0.57773817680197628293 |
Edge-scribed Radius: | root[8*(x^3)+8*(x^2)−2*x−1] = cos(π/7)−1/2 | ≈0.40096886790241912624 |
Inscribed Radius: | sqrt(root[832*(x^3)−944*(x^2)+72*x−1]) = sqrt((62−48*cos(π/7)−11/cos(π/7))/104) | ≈0.25085268881974022101 |