Vertices: | 12 (12[4]) |
Faces: | 14 (12 equilateral triangles + 2 regular hexagons) |
Edges: | 24 |
Symmetry: | 6-fold Antiprismatic (D6v) |
Hexagon-Triangle Angle: | acos(−(2*sqrt(3)−3)/3) | ≈98.899428880 degrees |
Triangle-Triangle Angle: | acos(−(2*sqrt(3)−1)/3) | ≈145.221891332 degrees |
Dual Solid: | Hexagonal Trapezohedron |
(values below based on edge length = 1) |
Circumscribed Radius: | sqrt(3+sqrt(3))/2 | ≈1.0876638735805374369 |
Midscribed Radius: | (sqrt(2)+sqrt(6))/4 | ≈0.9659258262890682867497 |
Hexagon Center Radius: | sqrt(sqrt(3)−1)/2 | ≈0.42779983858367609648 |
Triangle Center Radius: | sqrt(3*(5+3*sqrt(3)))/6 | ≈0.92178054251480378601 |
Volume: | sqrt(2*(1+sqrt(3))) | ≈2.33754178896073526154 |
References: | [1] | Johannes Kepler, Harmonices Mundi (1619). |
| [2] | Johannes Kepler with E. J. Aiton, A. M. Duncan, and J. V. Field, translators, The Harmony of the World, American Philosophical Society (1997). |
|