Self-Intersecting Truncated Quasi-Regular Polyhedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

(Uniform #45) Icositruncated Dodecadodecahedron
Vertices:  120  (120[3])
Faces:44  (20 regular hexagons + 12 regular decagons + 12 regular decagrams)
Edges:180
Symmetry:  Full Icosahedral  (Ih)
Decagon-Hexagon Angle:  acos(−sqrt(15*(5−2*sqrt(5)))/15)    ≈100.812316964 degrees
Decagon-Decagram Angle:  acos(−sqrt(5)/5)    ≈116.565051177 degrees
Decagram-Hexagon Angle:  acos(−sqrt(15*(5+2*sqrt(5)))/15)    ≈142.622631859 degrees
Dual Solid:  Tridyakis Icosahedron
(values below based on edge length = 1)
Circumscribed Radius:  2
Midscribed Radius:  sqrt(15)/2    ≈1.9364916731037084426
Decagon Center Radius:  sqrt(2*(5−sqrt(5)))/2    ≈1.1755705045849462583
Hexagon Center Radius:  sqrt(3)    ≈1.73205080756887729353
Decagram Center Radius:  sqrt(2*(5+sqrt(5)))/2    ≈1.9021130325903071442


References:[1]Jean Paul Albert Badoureau, Mémoire sur les Figures Isocèles,
Journal de l'École polytechnique 49 (1881), 47-172.
[2]Johann Pitsch, Über Halbreguläre Sternpolyeder,
Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216.