Archimedean-Catalan Hulls

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Joined Snub Cube (laevo)
Vertices:  62  (8[3] + 24[3] + 6[4] + 24[5])
Faces:60  (24 kites + 36 rhombi)
Edges:120  (96 short + 24 long)
Symmetry:  Chiral Octahedral  (O)
Long Edge Angle:  acos(−(cbrt(19+3*sqrt(33))    
    +cbrt(19−3*sqrt(33))−2)/3)    
≈147.064879199 degrees
Short Edge Angle:  acos(−(1+cbrt(19+3*sqrt(33))    
    +cbrt(19+3*sqrt(33)))/6)    
≈156.874001739 degrees
(values below based on unit-edge-length Snub Cube)
Short Edge (96):  sqrt(6*(10−cbrt(2*(13+3*sqrt(33)))    
    −cbrt(2*(13−3*sqrt(33)))))/12    
≈0.581420916535292358953
Long Edge (24):  sqrt(6*(6+cbrt(6*(9+sqrt(33)))    
    +cbrt(6*(9−sqrt(33)))))/12    
≈0.74018374136985722281
Rhombus Length:  1
Rhombus Width:  sqrt(6*(4−cbrt(2*(13+3*sqrt(33)))    
    −cbrt(2*(13−3*sqrt(33)))))/6    
≈0.593465355971987310502
Kite Length:  sqrt(3*(4+cbrt(19+3*sqrt(33))    
    +cbrt(19−3*sqrt(33))))/6    
≈0.8425091624448604672504
Kite Width:  1
[3]-Vertex Radius (8):  sqrt(2*(6+cbrt(6*(9+sqrt(33)))    
    +cbrt(6*(9−sqrt(33)))))/4    
≈1.2820358469890142117
[3]-Vertex Radius (24):  sqrt(2*(6+cbrt(6*(9+sqrt(33)))    
    +cbrt(6*(9−sqrt(33)))))/4    
≈1.2820358469890142117
[4]-Vertex Radius (6):  sqrt(6*(14+cbrt(2*(1777+33*sqrt(33)))    
    +cbrt(2*(1777−33*sqrt(33)))))/12    
≈1.361410151926442534501
[5]-Vertex Radius (24):  sqrt(3*(10+cbrt(199+3*sqrt(33))    
    +cbrt(199−3*sqrt(33))))/6    
≈1.3437133737446017013
Inscribed Radius:  sqrt(3*(7+cbrt(199+3*sqrt(33))    
    +cbrt(199−3*sqrt(33))))/6    
≈1.2472231679936432518
Volume:sqrt(116+6*cbrt(2*(1777+33*sqrt(33)))    
    +6*cbrt(2*(1777−33*sqrt(33))))/2    
≈8.64429023481174285147


References:[1]Conway Notation for Polyhedra (George Hart)