Archimedean-Catalan Hulls

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Joined Snub Dodecahedron (laevo)
Vertices:  152  (20[3] + 60[3] + 60[5] + 12[5])
Faces:150  (60 kites + 90 rhombi)
Edges:300  (240 short + 60 long)
Symmetry:  Chiral Icosahedral  (I)
Long Edge Angle:  acos(−(1−phi+(phi^3)/x)/2)    ≈157.756587464 degrees
Short Edge Angle:  acos(−((x^2)−1)/2)    ≈166.306414670 degrees
where:  phi = (1+sqrt(5))/2
x = cbrt((phi+sqrt(phi−5/27))/2)+cbrt((phi−sqrt(phi−5/27))/2)
(values below based on unit-edge-length Snub Dodecahedron)
Short Edge (240):  sqrt((x^2)+1)/(2*x)    ≈0.578742573949315776654
Long Edge (60):  sqrt(2*(x^2)*(24+53*phi)    
    +x*(207+337*phi)+(1097−20*phi))/62    
≈0.88361095303943028718
Rhombus Length:  1
Rhombus Width:  1/x    ≈0.58289953474498241442
Kite Length:  (x*(2+7*phi)+(5*phi−3)+2*(8−3*phi)/x)/31    ≈1.0199882470228458983
Kite Width:  1
[3]-Vertex Radius (20):  sqrt(3*(x*phi+1+phi+(1/x)))/2    ≈2.1172098986276657420
[3]-Vertex Radius (60):  sqrt(3*(x*phi+1+phi+(1/x)))/2    ≈2.1172098986276657420
[5]-Vertex Radius (60):  phi*sqrt(x*(x+phi)+(3−phi))/2    ≈2.1558373751156397018
[5]-Vertex Radius (12):  sqrt((x^2)*(1009+1067*phi)    
    +x*(1168+2259*phi)+(1097+941*phi))/62    
≈2.2200006991613182111
Inscribed Radius:  phi*sqrt(x*(x+phi)+1)/2    ≈2.0970538352520879924
Volume:5*sqrt(3*(x^2)*(8951*phi−3399)    
    +x*(8460+32617*phi)+5*(10847−1793*phi))/62    
≈39.725278226867477520


References:[1]Conway Notation for Polyhedra (George Hart)