Archimedean-Catalan Hulls

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Joined Rhombicosidodecahedron
Vertices:  122  (20[3] + 60[4] + 30[4] + 12[5])
Faces:120  (60 short kites + 60 long kites)
Edges:240  (60 short + 120 medium + 60 long)
Symmetry:  Full Icosahedral  (Ih)
Long Edge Angle:  acos(−(35+sqrt(5))/40)    ≈158.575812472 degrees
Medium Edge Angle:  acos(−(5+2*sqrt(5))/10)    ≈161.3005929149 degrees
Short Edge Angle:  acos(−(15+2*sqrt(5))/20)    ≈166.807000959 degrees
(values below based on unit-edge-length Rhombicosidodecahedron)
Short Edge (60):  sqrt(171−4*sqrt(5))/22    ≈0.57864141269310548062
Medium Edge (120):  sqrt(11−4*sqrt(5))/2    ≈0.71689052337174209824
Long Edge (60):  sqrt(19+4*sqrt(5))/6    ≈0.88103903164261366946
Short Kite Length:  sqrt(5*(85−31*sqrt(5)))/11    ≈0.80499198439381116988
Short Kite Width:  1
Long Kite Length:  sqrt(5*(5−sqrt(5)))/3    ≈1.2391601148672816338
Long Kite Width:  1
[3]-Vertex Radius (20):  (5*sqrt(3)+4*sqrt(15))/11    ≈2.1956534020612776371
[4]-Vertex Radius (60):  sqrt(11+4*sqrt(5))/2    ≈2.2329505094156900495004
[4]-Vertex Radius (30):  sqrt(5)    ≈2.2360679774997896964
[5]-Vertex Radius (12):  sqrt(5*(5+2*sqrt(5)))/3    ≈2.2939698674519558970
Inscribed Radius:  sqrt(2*(5+2*sqrt(5)))/2    ≈2.1762508994828215111
Volume:50*(7+10*sqrt(5))/33    ≈44.485878446966510552


References:[1]Conway Notation for Polyhedra (George Hart)