Archimedean-Catalan Hulls

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Joined Truncated Dodecahedron
Vertices:  92  (20[3] + 60[3] + 12[10])
Faces:90  (60 kites + 30 rhombi)
Edges:180  (60 short + 120 long)
Symmetry:  Full Icosahedral  (Ih)
Long Edge Angle:  acos(−(5+2*sqrt(5))/10)    ≈161.3005929149 degrees
Short Edge Angle:  acos(−(13+3*sqrt(5))/20)    ≈170.200773629 degrees
(values below based on unit-edge-length Truncated Dodecahedron)
Short Edge (60):  sqrt(6*(119−5*sqrt(5)))/44    ≈0.57805868144301361253
Long Edge (120):  sqrt(2*(17+5*sqrt(5)))/4    ≈1.8768437563999216822
Rhombus Length:  (5+sqrt(5))/2    ≈3.6180339887498948482
Rhombus Width:  1
Kite Length:  5*(7+sqrt(5))/22    ≈2.09910635852267947646
Kite Width:  1
[3]-Vertex Radius (20):  5*(3*sqrt(3)+2*sqrt(15))/22    ≈2.9413907079821512843
[3]-Vertex Radius (60):  sqrt(2*(37+15*sqrt(5)))/4    ≈2.9694490158633984670
[10]-Vertex Radius (12):  sqrt(5*(5+2*sqrt(5)))/2    ≈3.44095480117793384552
Inscribed Radius:  (5+3*sqrt(5))/4    ≈2.9270509831248422723
Volume:25*(47+24*sqrt(5))/22    ≈114.39276302272153717


References:[1]Conway Notation for Polyhedra (George Hart)