Higher Genus Toroidal Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Klein Map Dual {3,7}8 (Schulte & Wills)
Vertices:  24  (12[7] + 12[7])
Faces:56  ({4 * 2} equilateral triangles + {12 * 4} obtuse triangles)
Edges:84  (7 different lengths)
Symmetry:  Chiral Tetrahedral  (T)
Dual Toroid:  Klein Map {7,3}8
(values below based on integer coordinates)
Edge 1 (12):  sqrt(2)    ≈1.4142135623730950488
Edge 2 (24):  sqrt(6)    ≈2.4494897427831780982
Edge 3 (6):  10
Edge 4 (12):  sqrt(134)    ≈11.575836902790225474
Edge 5 (12):  sqrt(146)    ≈12.083045973594572068
Edge 6 (12):  5*sqrt(6)    ≈12.247448713915890491
Edge 7 (6):  2*sqrt(41)    ≈12.806248474865697373
Volume:332/3    ≈110.66666666666666667


References:[1]Egon Schulte and Jörg M. Wills, A polyhedral realization of
Felix Klein's Map {3,7}8 on a Riemann surface of genus 3,
Journal of the London Mathematical Society 32 (1985), 539-547.