Regular Hexagonal Toroidal Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Regular Hexagonal Toroid with 8 faces (version 1)
version 1
Vertices:  16  (2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3])
Faces:8  (1 convex hexagon + {2 * 3 + 1} nonconvex hexagons)
Edges:24  (13 different lengths)
Symmetry:  2-fold Cyclic  (C2)
Dual Toroid:  Regular Triangular Toroid with 16 faces
Edge 1 (2):  5/2    2.5
Edge 2 (2):  11/4    2.75
Edge 3 (2):  5*sqrt(2)/2    ≈3.5355339059327376220
Edge 4 (2):  2*sqrt(14)    ≈7.4833147735478827712
Edge 5 (2):  7*sqrt(6)/2    ≈8.5732140997411233437
Edge 6 (1):  7*sqrt(2)    ≈9.8994949366116653416
Edge 7 (2):  43/4    10.75
Edge 8 (2):  31*sqrt(2)/4    ≈10.960155108391486628
Edge 9 (2):  5*sqrt(21)/2    ≈11.456439237389600016
Edge 10 (2):  23/2    11.5
Edge 11 (2):  11*sqrt(42)/4    ≈17.8220369206216156352
Edge 12 (1):  24
Edge 13 (2):  21*sqrt(21)/4    ≈24.0585223985181600346
Volume:14547/16    909.1875


References:[1]Lajos Szilassi, Locally regular toroids with hexagonal faces,
Symmetry: Culture and Science 20(1-4) (2009), 269-295.