Other Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Rhombic Enneacontahedron
Vertices:  92  (60[3] + 12[5] + 20[6])
Faces:90  (60 wide rhombi + 30 thin rhombi)
Edges:180  (equal length)
Symmetry:  Full Icosahedral  (Ih)
Thin-Wide Dihedral Angle:  acos(−(3*sqrt(2)+sqrt(10))/8)    ≈157.761243907 degrees
Wide-Wide Dihedral Angle:  acos(−(1+3*sqrt(5))/8)    ≈164.477512186 degrees
The dual has the same polyhedral graph as the Rectified Truncated Icosahedron
(values below based on edge length = 1)
Wide Rhombus Length:  2*sqrt(6)/3    ≈1.63299316185545206546
Wide Rhombus Width:  2*sqrt(3)/3    ≈1.1547005383792515290
Thin Rhombus Length:  (sqrt(3)+sqrt(15))/3    ≈1.8683447179254313929
Thin Rhombus Width:  (sqrt(15)−sqrt(3))/3    ≈0.7136441795461798639
[3]-Vertex Radius (60):  (sqrt(21)+sqrt(105))/6    ≈2.4715877434859063983
[5]-Vertex Radius (12):  sqrt(30*(5+sqrt(5)))/6    ≈2.4556173659421150570
[6]-Vertex Radius (20):  (3+sqrt(5))/2    ≈2.6180339887498948482
Wide Rhombus Center Radius:  (5*sqrt(6)+3*sqrt(30))/12    ≈2.3899271199225728246
Thin Rhombus Center Radius:  (2*sqrt(3)+sqrt(15))/3    ≈2.4456949871150571574
Volume:20*(7*sqrt(3)+4*sqrt(15))/9    ≈61.369531195137352434


References:[1]Rhombic Enneacontahedron (Wolfram MathWorld)