Catalan Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Pentagonal Hexecontahedron (dextro)
canonical form
Vertices:  92  (80[3] + 12[5])
Faces:60  (mirror-symmetric pentagons)
Edges:150  (90 short + 60 long)
Symmetry:  Chiral Icosahedral  (I)
Dihedral Angle:  acos(−(2*(x+(2/x))*(1+15*phi)    
    +(15+16*phi))/209)    
≈153.178732558 degrees
where:  phi = (1+sqrt(5))/2
x = cbrt((phi+sqrt(phi−5/27))/2)+cbrt((phi−sqrt(phi−5/27))/2)
Dual Solid:  Snub Dodecahedron (laevo)
(values below based on unit-edge-length Snub Dodecahedron)
Short Edge (90):  1/x≈0.58289953474498241442
Long Edge (60):  (x*(2+7*phi)+(5*phi−3)+2*(8−3*phi)/x)/31    ≈1.0199882470228458983
[3]-Vertex Radius (80):  sqrt(3*(x*phi+1+phi+(1/x)))/2    ≈2.1172098986276657420
[5]-Vertex Radius (12):  sqrt((x^2)*(1009+1067*phi)    
    +x*(1168+2259*phi)+(1097+941*phi))/62    
≈2.2200006991613182111
Edge-scribed Radius:  phi*sqrt(x*(x+phi)+1)/2    ≈2.0970538352520879924
Inscribed Radius:  x*sqrt(209*((x^2)*(104*phi−7)    
    +x*(52+153*phi)+(195−phi)))/418    
≈2.0398731549542789999
Volume:5*sqrt(x*((x^2)*(287+11405*phi)    
    +x*(8265+14528*phi)+(13146+2363*phi)))/62    
≈37.588423673993486442


References:[1]Eugène Catalan, Mémoire sur la Théorie des Polyèdres,
Journal de l'École polytechnique 41 (1865), 1-71, +7 plates.