Vertices: | 38 (32[3] + 6[4]) |
Faces: | 24 (mirror-symmetric pentagons) |
Edges: | 60 (36 short + 24 long) |
Symmetry: | Chiral Octahedral (O) |
Dihedral Angle: | acos((1−cbrt(2*(283+21*sqrt(33))) −cbrt(2*(283−21*sqrt(33))))/21) | ≈136.309232892 degrees |
Dual Solid: | Snub Cube (laevo) |
(values below based on unit-edge-length Snub Cube) |
Short Edge (36): | sqrt(6*(4−cbrt(2*(13+3*sqrt(33))) −cbrt(2*(13−3*sqrt(33)))))/6 | ≈0.593465355971987310502 |
Long Edge (24): | sqrt(3*(4+cbrt(19+3*sqrt(33)) +cbrt(19−3*sqrt(33))))/6 | ≈0.8425091624448604672504 |
[3]-Vertex Radius (32): | sqrt(2*(6+cbrt(6*(9+sqrt(33))) +cbrt(6*(9−sqrt(33)))))/4 | ≈1.2820358469890142117 |
[4]-Vertex Radius (6): | sqrt(6*(14+cbrt(2*(1777+33*sqrt(33))) +cbrt(2*(1777−33*sqrt(33)))))/12 | ≈1.361410151926442534501 |
Edge-scribed Radius: | sqrt(3*(7+cbrt(199+3*sqrt(33)) +cbrt(199−3*sqrt(33))))/6 | ≈1.2472231679936432518 |
Inscribed Radius: | sqrt(42*(78+cbrt(66*(6039+49*sqrt(33))) +cbrt(66*(6039−49*sqrt(33)))))/84 | ≈1.1576617909555498021 |
Volume: | sqrt(6*(113+cbrt(1327067+1419*sqrt(33)) +cbrt(1327067−1419*sqrt(33))))/6 | ≈7.4473951888148613654 |