Vertices: | 11 (1[3] + 1[3] + 3[3] + 3[3] + 3[4]) |
Faces: | 9 (3 acute triangles + 3 kites + 3 irregular pentagons) |
Edges: | 18 (5 different lengths) |
Symmetry: | 3-fold Cyclic (C3) |
Dual Solid: | Simplest C3 (1 of 5) |
(values below based on edge-scribed radius = 1) |
Edge 1 (3): | sqrt(root[12th-order polynomial]) | ≈0.7444579276997718225502 |
Edge 2 (3): | sqrt(root[12th-order polynomial]) | ≈1.16429452894639568652 |
Edge 3 (6): | sqrt(root[12th-order polynomial]) | ≈1.2423522200570259269 |
Edge 4 (3): | sqrt(root[12th-order polynomial]) | ≈1.2814871806041052027 |
Edge 5 (3): | sqrt(root[12th-order polynomial]) | ≈1.3914879754025424638 |
Edge-scribed Radius: | 1 |
Volume: | sqrt(root[12th-order polynomial]) | ≈3.1039634067546582620 |