Self-Intersecting Truncated Regular Polyhedra

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

(Uniform #37) Truncated Great Dodecahedron
Vertices:  60  (60[3])
Faces:24  (12 regular pentagrams + 12 regular decagons)
Edges:90
Symmetry:  Full Icosahedral  (Ih)
Decagon-Decagon Angle:  acos(sqrt(5)/5)    ≈63.434948823 degrees
Decagon-Pentagram Angle:  acos(−sqrt(5)/5)    ≈116.565051177 degrees
Dual Solid:  Small Stellapentakis Dodecahedron
(values below based on edge length = 1)
Circumscribed Radius:  sqrt(2*(17+5*sqrt(5)))/4    ≈1.8768437563999216822
Midscribed Radius:  (5+sqrt(5))/4    ≈1.8090169943749474241
Decagon Center Radius:  sqrt(2*(5+sqrt(5)))/4    ≈0.95105651629515357212
Pentagram Center Radius:  sqrt(10*(65+29*sqrt(5)))/20    ≈1.8017073246471935043


References:[1]Johann Pitsch, Über Halbreguläre Sternpolyeder,
Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216.