Catalan Solids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)
Please use a browser that supports "canvas"

Pentagonal Icositetrahedron (laevo)
Vertices:  38  (32[3] + 6[4])
Faces:24  (mirror-symmetric pentagons)
Edges:60  (36 short + 24 long)
Symmetry:  Chiral Octahedral  (O)
Dihedral Angle:  acos((1−cbrt(2*(283+21*sqrt(33)))    
    −cbrt(2*(283−21*sqrt(33))))/21)    
≈136.309232892 degrees
Dual Solid:  Snub Cube (dextro)
(values below based on unit-edge-length Snub Cube)
Short Edge (36):  sqrt(6*(4−cbrt(2*(13+3*sqrt(33)))    
    −cbrt(2*(13−3*sqrt(33)))))/6    
≈0.593465355971987310502
Long Edge (24):  sqrt(3*(4+cbrt(19+3*sqrt(33))    
    +cbrt(19−3*sqrt(33))))/6    
≈0.8425091624448604672504
[3]-Vertex Radius (32):  sqrt(2*(6+cbrt(6*(9+sqrt(33)))    
    +cbrt(6*(9−sqrt(33)))))/4    
≈1.2820358469890142117
[4]-Vertex Radius (6):  sqrt(6*(14+cbrt(2*(1777+33*sqrt(33)))    
    +cbrt(2*(1777−33*sqrt(33)))))/12    
≈1.361410151926442534501
Edge-scribed Radius:  sqrt(3*(7+cbrt(199+3*sqrt(33))    
    +cbrt(199−3*sqrt(33))))/6    
≈1.2472231679936432518
Inscribed Radius:  sqrt(42*(78+cbrt(66*(6039+49*sqrt(33)))    
    +cbrt(66*(6039−49*sqrt(33)))))/84    
≈1.1576617909555498021
Volume:sqrt(6*(113+cbrt(1327067+1419*sqrt(33))    
    +cbrt(1327067−1419*sqrt(33))))/6    
≈7.4473951888148613654


References:[1]Eugène Catalan, Mémoire sur la Théorie des Polyèdres,
Journal de l'École polytechnique 41 (1865), 1-71, +7 plates.